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MACROMOLECULAR REPORTS, A29(SUPPL. 2 ) ,  8 7 - 9 7  (1992)  

GLOBAL AND LOCAL STRUCTURE IN TETHERED CHAINS 

T. A. Witten 
James Franck Institute, University of Chicago 

Chicago IL 60637, USA 

ABSTRACT 

The deformation of polymer chains when their ends are confined e.g. to a surface can be 
viewed a t  two levels. At the global level, one may treat the deformation of a chain as a single 
variable. ‘This view accounts for fundamental ways in which tethered chains are distinctive, 
such as the large energy scale for bending, compressing and shearing the layer. This large 
energy scale has far-reaching consequences: it imposes strong equilibrium constraints locally 
along the length of each chain. In this way the tethered layer acquires complex nonlocal 
interactions among the chains. We discuss two ways in which this interaction manifests it.self 
in distinctive responses to local perturbations. The distinctive response of conlposit,ion gives 
rise to new modes of pattern-forming phase separation. The distinctive response of pressure 
makes possible the controllable partitioning of the chains into two populations. 

INTRODUCTION 

Figure 1 shows a simulated layer [I] of grafted polymer chains--a central subject of this 
meeting. Each chain has the self-avoiding-walk appearance that, it would have in solut,ion. 
But there is a clear difference, seen in the average chain dimensioiis indicated on the right 
side of the figure: the chains are distinctly elongated. If each chain is lengthened, t,he 
degree of elongation is observed to increase progressively [l]. The elongation of the chains 
represents significant stored free energy. In  the picture it amounts t o  roughly a thermal 
energy kT per chain. If the chains are made longer, the stored energy per chain increases 
proportionately. This stored elastic energy implies a stress in the layer, similar to that  found 
in a deformed gel. As in a gel, the stress and elongation must be described by statist,ical 
laws that  are essentially independent of the chemical nature of the polymers used. But the 
grafted layer is different from a gel: here the chains are quite free to  move-almost as much 
as  in solution 

Our goal in this meeting is to  explore what matter in t.his amtiiguous tethered &ate 
can do. The famous double-diamond microdomain structure seen in block copolyniers [2,3] 
is one exa.mple. The polymers in this material are each made of two immiscible chains. The  
two species t.hus phase separate with the junction points a t  the phase boundary. Each chain 
is thus tethered to the phase boundary, like those of Figure 1. The distinctive structure--not 
seen in other forms of matter-is that which minimizes the elastic energy of the elongated 
polymers, combined with the interfacial energy of the two species. The self-organizat,ion 
seen here takes a wide variety of forms in polymer [4] and surfactant [5] liquids. It. is 
clear t,hat, the forms are controlled by simple principles of entropic elasticity and are largely 
independent, of the chemical nature of the flexible chains. But our power to predict, and 
control these structures is a t  a primitive stage [6 ] .  
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aa WITTEN 

Figure 1 Configuration of a simulated layer of flexible grafted chains [l]. Chains are 
simulated as impenetrable balls joined by springs and equilibrated by dissipat,ive 
molecular dynamics. The ellipse shows the root-mean-square chain dimensions in 
two directions. 

Naturally the constraints and stress of the tethered state lead to  distinctive mechanical 
properties. A well-known example is the dynamic shear modulus G(w)  of microphase- 
separated diblocks-t.e., the ratio of stress to  strain under a small oscillating shear [7]. 
When microphase separation (and tethering) occur, the low-frequency response departs from 
that  characteristic of a liquid and assumes a mysterious fractional power-law dependence 
on frequency. 

In this talk I want to explore the consequences of the tethering constraint in flexible- 
chain liquids like the polymers and surfactants mentioned above. I want to consider the 
ways in which tethered chains should give distinct,ive behavior to liquids. To complement 
other talks in this meeting, I’ll emphasize structural and energetic properties. A great deal 
has been discovered about tethered chains in the last decade-much of it by participants 
in this meeting. This work has been treated in three excellent recent reviews [8,9,6]. But 
I want to  convince you that despite this work we have only begun to explore the potential 
behavior of tethered-chain liquids. 

The consequences of tethering can he thought of in three broad classes. The first is 
tethering without the crowding and elongation seen in Figure 1. Even without crowding, 
tethered chains have certain distinctive properties, and I want to mention these. When 
chains are tethered at  sufficient density, crowding and chain stretching results. The main 
resulting properties can be understood by considering this stretching globally. as a single 
degree of freedom common to  all the chains in a given region. I want to  mention how this 
global point of view works, and list some of the properties that result. 

The focus of my talk, though, are those properties that require a more local analysis- 
vir. the equilibrium within each chain and between regions much smaller than the layer 
thickness. It is natural to express the distinctive properties in terms of response functions. 
These tell how a small perturbation at, one point in the layer affects conditions at  another. 
I’ll discuss two kinds of response functions. The first and easiest to understand is the 
compositional response of a layer with two species of chains. Perturbing the composition 
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GLOBAL AND LOCAL STRUCTURE I N  TETHERED CHAINS 89 

a t  one point affects the composit,ion elsewhere in a well-defined and distinctive way. When 
the two species are immiscible, this response property leads to a distinctive type of phase 
separation within t,he layer. A second type of response results when the total monomer 
density is perturbed at  a given point, This naturally resu1t.s in extra pressure in the region 
around the perturbation. The pressure response function can be formally related to  the 
compositional response function. I will sketch its behavior in simple cases. An unusual 
pressure response occurs when the perturbation is larger than infinitesimal. Here a local 
perturbation of the monomer density can lead to a qualitative redistribution st'ress. 

L O C A L  AND GLOBAL EQUILIBRKJM 

The properties discussed below depend on a few fundamental principles conimon to 
all flexible polymer liquids. A polymer melt is essentially inconipressible. Thus each chain 
displaces a volume V proportional to t,he number of monomers in it,. (In solutioii, where 
the polymers can be compressed, one must modify these principles in a straightforward 
way.) The natural length scale describing a polymer of volume V is its average end-to-end 
distance R. This R arises from the fact that flexible chains in the melt st,ate are random 
walks: RZ = a- 'V.  The coefficient a is a microscopic length of order ten Aiigst,ronis 
for hydrocarbon chains. It depends on the local structure of t,he chains and the liquid, 
and is insensitive to global constraints like tethering. By contrast., the volume c' can in 
principle be indefinitely large. For typical diblock copolymers V is of the order of lo5 cubic 
Angstroms. Throughout this talk we shall consider the asynipt,ot,ic behavior t.hat results 
when V is arbitrarily large. Such a random walk chain evidently pervades a volume of 
order R3 - 1,'3/2. This volume is asymptotically much larger fhan the volume 1,' displaced 
by a chain; thus many chains share this volume. The chains int,erpenetrate strongly. A 
given small fraction of a long chain thus touches and int,eracts directly with indefinit,ely 
many others. The interactions are self-averaging. This justifies the use of the mean-field 
methods to be introduced below. Finally, these random-walk chains have a characteristic 
energy of deformation. The work to  stret.ch a chain of unperturbed radius R is to a distance 
h is $kT(k)2 .  The chains behave elastically like ideal springs. The work required for a 
deformation of order unity is LT. 

The gentlest way to tether the chains in a liquid like this is to join several ends t,oget.her 
to form star polymers. Unless the number of arms is very large, this causes little deformation 
of the type seen in Figure 1. Still, there are dramatic consequences. If even three chains are 
joined a given chain can no longer move by slithering along its own length. This inhibits 
the motion of the star and slows mechanical relaxation qualitatively [lo]. A subt,le featlure 
develops in the static structure as the number of arms increases, as well. It is called the 
correlation hole [ll] effect: the density of nodes is slightly depleted around any given node, 
out to  a distance of order R. These simple consequences of tethering are important to keep 
in mind, even in the strongly tethered cases considered below. For crowding may not, be t,he 
essential feature responsible for anonialous properties like the dynamic modulus mentioned 
above. 

The simplest case of tethered chains with crowding is a grafted-chain layer, with u chains 
per unit area, like that  shown in Figure 1. Here the chains stretch out to  a height h which 
makes the best compromise between the intra-chain elastic stretching energy and the inter- 
chain excluded-volume repulsion. The overall scaling of this height, and the corresponding 
stored energy can be found by a simple global analysis [12,13]. In such systems with or 
without solvent the interaction (free) energy density II depends on the height h only through 
the local volume fraction 4 = uV/h.  This energy is necessarily of t,he same order as the 
stretching energy density. This is the elastic energy per chain, h,2/V times the number of 
chains per unit volume u/h .  Combining these factors, one sees that  the elastic energy is 
of order d(h/V)' .  To keep this stretching energy in balance with the interaction energy, 
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i t  must remain a bounded multiple of 4 as I/ -+ co: h must increase in proportion with 
I/. This must be true whether the interaction is that of a good solvent, bad solvent, or 
incompressible melt. These two forms of energy must stay in balance under deformation. 
Thus whether the layer is stretched by an external force or sheared, the scale of energy 
stored per unit volume is that of a uniform gel or rubber of the same density 4. In this 
qualitative, global sense the layer is elastically isotropic. 

This global energy balance is sufficient to account for most of the fundamental properties 
of grafted layers. How the height h depends on the grafting density 0 depends strongly on 
the nature of the energy II(4). The scaling has been worked out for melts 1141, solvents 
[12,13,15], and polyelectrolytes [16]. Curving the layer to form e.g. a many-armed star 
polymer produces power-law density profiles [17,18]. Deforming the layer also requires 
work, expressed in the form of bending moduli, spontaneous curvatures (19,201 compressional 
energies [13] and shear moduli [21]. Often the chains are grafted by specific attraction of the 
end for the surface; then the chains may achieve a dynamic equilibrium with the solution 
in which chains continually attach and detach. The kinetics of these processes and their 
dependence on the solution properties are altered strongly by the crowding of the chains 
[22,23,24]. The interaction energy within the layer often acts to exclude any untethered 
chains outside. This influences e.g. entanglement of the grafted chains with the free chains 
[13]. Finally, the global balance of energies explains the main features of self-assembly in 
amphiphilic chains, such as surfactants, immiscible diblock polymers [14], and partly rigid 
copolymers [25]. We have seen above that  for global purposes a grafted layer resembles a gel 
or rubber at the same density. Yet a grafted layer must be rather different from a rubber, 
in which chains are constrained by cross-links all along their length. Deformation of chains 
in a rubber occurs by direct tension through these cross-links and the entanglements they 
trap. But in a grafted layer, there are neither cross-links nor entanglements to  cause the 
equilibrium stretching. Instead each chain is forced upward by the pressure of the chains 
around it,  which are forced upward as well. Asking how these forces arise and what form 
they take leads us to  consider local equilibrium within the layer. Otherwise put, we must 
understand the ensemble of chain configurations in this strongly interacting system. This 
ensemble has long been recognized as a subtle self-consistency problem, and elegant means 
have been devised to solve i t  numerically [26,27,28,29,30]. Our point of view here is to  look 
for the simplifying features that  appear when the chains are taken to be asymptotically long 
and strongly stretched, as was  first done by Semenov [31]. 

To this end, let us consider a melt layer, and let us imagine our chains as consisting 
of N conventional “monomers”, each displacing volume u .  Without interaction each chain 
obeys the usual Gaussian random-walk statistics [ l l ] .  But as we have seen the interactions 
stretch each chain to  an average height indefinitely greater than its unperturbed length R. 
We can readily see how this interaction influences a given monomer if we imagine putting 
an extra, detached, monomer into the layer a t  height z from outside. Putting in this extra 
monomer displaces a volume v and forces the overall height to  increase slightly. Thus the 
surrounding chains must stretch slightly more to  accommodate the new monomer; work 
must thus be done. This work is proportional to the volume displaced: it is a pressure p ( z ) .  

This pressure strongly influences the statistics of a chain. We may see how the chains 
are deformed by considering the equilibrium position of some monomer i of a chain whose 
free end is a t  height zo. This position za is that a t  which the average forces on the monomer 
balance. Since the chains are strongly stretched we expect the monomer to  be usually 
close to this equilibrium position. There are three forces to  consider. The pressure exerts 
a force vVp. In addition the chain feels elastic forces from the preceding monomer i - 1 
and the subsequent one i + 1 along the chain. We shall take our monomers large enough 
that each may be considered as a small polymer for this purpose. Then the elastic forces 
have the ideal-spring form discussed above: they are proportional to the displacements 
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GLOBAL AND LOCAL STRUCTURE I N  TETHERED CHAINS 9 1  

ri - ri-1 and r,+1 - ri. The balance of the three forces amounts to  a condition of the form 
-(ri - r i - l ) + ( r i + ~  - r j )  = v V p ( r ) .  Assuming that  N is large and taking a continuum limit, 
this says wVp = d2r /d i2 .  This force-equilibrium condition has the same form as Newton’s 
equation of motion for a particle in an external potential. 

The path ri of a chain 
from its free end to the grafting surface is the trajectory r ( t )  that  a Newtonian particle 
with potential energy p ( r )  would follow if released from rest at T O .  This analogy contains 
the condition for equilibrium within each chain. It shows that a monomer at one point is 
influenced substantially by the pressure a t  distant points higher or lower within the layer. 

Of course this same stretching of the chains produces the pressure p in the first place. 
The necessary balance of energies, considered at the level of individual chains, determines 
the form of the pressure profile. The stretching of each chain must be such as to  minimize 
its elastic-plus-interaction energy S(zo )  (the action of the corresponding classical particle). 
This action also controls the distribution of end positions: the relative probability that  
an end is a t  zg must be the Boltzmann weight exp[-S(z~)/(kT)]. The elastic part of the 
action S is indefinitely large relative to BT, and scales as z$ /V ,  as we have seen. But 
if chain ends are t o  be found at  all heights zo within the layer, their Boltzmann weights, 
and thence their energies S must be equal to  within about BT. The energy S(z0) must be 
virtually constant for all heights zo: the large changes in the elastic term must be almost 
completely compensated by the interaction energy. This latter scales as V .  We are led 
to  the conclusion that  ( p ( z 0 )  - p ( 0 ) )  must scale with height like the elastic energy [33]: 
p ( z )  - z z / V 2  + constant. The pressure profile is parabolic. One may, by pursuing the 
Newtonian-mechanics analogy make this statement precise and infer the coefficient of z2 
[32]: it is ( - k T n 2 u ) / ( 8 V z ) .  Remarkably, although this pressure arises from the interaction 
between chains, its form may he determined completely without reference to  how the chains 
interact, except for an additive constant. The only material property that enters the zz  
coefficient is the elastic constant a. This p continues to have the same form in any kind 
of solvent, provided we maintain our interpretation of p as the work per unit chain volume 
required to insert a small section of chain at  height z .  (Thus p is essentially a chemical 
potential.) We see that  the requirements of local equilibrium impose strong conditions 
throughout the layer. Even with the pressure profile determined, the chain statistics are 
not yet fixed. It remains to find the distribution of end positions 20. This distribution may 
readily be found by imposing the constitutive properties of the melt or solution in question. 
For a melt, the local volume fraction must be unity everywhere; for a “marginal” solvent, 
it  must be proportional to  the local p ,  etc. In either case, the relative number of monomers 
a t  each height z is fixed. It is a straightforward process to determine how the chain ends 
must be placed to produce the proper number of monomers a t  each height [34]. One finds 
as assumed that  ends are distributed throughout the layer, with a simple functional form 
that  differs according to the nature of the solvent. The end density falls to zero at  a specific 
height h. 

Having sketched the conditions for local equilibrium, we can see that  the “coupling” 
within a grafted layer has a level of complexity not found in simpler condensed-matter 
systems. We may see these complex couplings by considering a region inside the layer much 
smaller than the height, yet much larger than the chemical repeat unit. Thus a large number 
of chains pass through this local region. Our question is how much can such a region be 
influenced by distant regions of the layer. One form of influence is via the tensions of the 
chains passing through the region. We have seen that  these chains end a t  heights ranging 
from that of the region in question up to the maximal height h .  This means that  the region 
has a distribution of tensions P ( T ) .  It turns out that  in a melt layer this distribution has the 
functional form of a cosine; the most likely tension is zero. It is clear that  this distribution of 
tensions is controlled by distant regions of order h away. Moreover, the distribution can be 
altered in detail by changing conditions far away. Thus e.g. the cosine distribution may be 

[31,32]. 

This analogy may be filled out into the following picture. 
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altered to approach a delta function by curving the layer [35]. This example suggests that  in 
a grafted layer a local region is influenced in some detail by distant regions. Influence from 
distant regions is common in condensed matter. Thus in an ordered material like a magnet 
the local order parameter or magnetic field is controlled by faraway boundary conditions. 
The same is true of the local velocity in a flowing fluid. In these systems a small set of 
quantities is determined by distant conditions. In the grafted layer, by contrast, a.n entire 
distribution of quantities-an indefinitely large set of numbers-is determined by didant  
[36] conditions. The complex coupling of our grafted layer resembles that  found in exotic 
condensed matter systems, like weakly localized electronic systems. 

SPATIAL RESPONSE T O  LOCAL PERTURBATIONS 

One way to investigate what this complexity can do is to explore the linear response 
properties of our grafted-chain system. The basic types of response are those found in 
any polymer liquid. A fundamental response property in any dense polymer liquid is the 
compositional response. To define it we imagine a blend of two species of chain-say black 
and white-which are identical except for labeling. At any point there is a local volume 
fraction of black monomers, 4~ and a volume fraction of white monomers +W , which are 
equal on average. The difference +B - 4w at  a point tells how far that  point has departed 
from the average composition. Now we imagine a local external energy perturbation AE 
proportional to  4~ - 4~ a t  a point T .  This perturbation attracts white monomers and 
repels black ones; accordingly, in the region around the perturbed point T there is a slight 
excess of white monomers over black ones; the amount of excess is evidently proportional to  
the strength of the perturbation. The compositional response function C,(r, T ’ )  is defined 
as ( 4 ~  - 4 ~ )  (r’) caused by the perturbation AE at r (up to a constant factor proportional 
to  the strength of the perturbation). 

Evidently the reason for this nonlocal response is that  any monomer attracted to r 
belongs to  a chain that  occupies many other points r’. Indeed, Ce(r,r’) is simply the 
probability that the monomer at  r belongs to the same chain as the one at  r’, in the absence 
of the perturbation. This is a well-known manifestation of the relationship between linear 
response and spatial correlations in an equilibrium system [37]. The range of Ir - r’l over 
which C, is appreciable is evidently the average size R of the polymers. 

This same approach may be used to find the compositional response of a grafted layer 
[38] of black and white chains. Again, one may show that  the response CC(r,r‘)  is relat,ed 
to  the probability that  a given chain passes through both points. From this fact, we may 
readily infer the general shape of the response function. Its vertical range is the entire 
height h of the layer, since a typical chain extends a vertical distance of t,his order. Its 
lateral range is the width of the region that  a chain typically explores. Since there are no 
external forces like p ( z )  in this direction, the chains are simple random walks in the lateral 
directions. Accordingly, the lateral range of the response function is of the order of the 
unperturbed size R. The response of composition is quite anisotropic and quite different 
from that  of ungrafted chains. Using the Newtonian-mechanics methods of the last sect,ion, 
we can evidently treat these single-chain configurations quantitatively, and thus compute 
Cc(r ,  T ’ )  explicitly. The result is shown on the left side of Figure 2. 

Aside from its fundamental interest, the compositional response controls phase sepa- 
ration of two species in a grafted layer, just as it does in a simple blend [ll] or a melt of 
diblocks [39]. If the species are partly immiscible, any random perturbation in the com- 
position itself serves as a AE to  drive further changes in composition. For large enough 
immiscibility, the induced response is larger than the initial perturbation, leading to  a run- 
away increase in the fluctuation. This runaway first appears when there is a compositional 
pattern ( b ( ~ )  4 B ( r )  - Cw(r)  satisfying 
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GLOBAL AND LOCAL STRUCTURE I N  T E T H E R E D  C H A I N S  

Figure 2 left: Compositional correlation function C,(T, T’) for grafted chains in the 
melt state, after Ref. 38. The point T is taken at h / 2 ,  Le . ,  in the middle of the 
grafted layer. The function has a similar shape for other choices of T.  Horizontal 
scale t is in units of ungrafted chain rms  e n d - b e n d  distance; the chains are grafted 
a t  z = 0. The “notch” for z N z’ arises because any segment of the strekhed 
chain connecting points of equal height is necessarily much shorter than V ,  and 
accordingly has a natural lateral dimension much smaller than R. right: Incipient 
phase separation pattern [ d ~  - 4 ~ ] ( 2 ,  z )  for a symmetric mixt,ure of grafted black 
and white chains as inferred from C, using Eq. (1) [41]. 
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Figure 3 Sketch of a grafted layer with a small region of perturbed density A4. 
Curved black lines suggest pressure response Ap. 
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Here A is roughly speaking t,he work required to insert a unit volume of black chain into 
a melt, of wThite chains, in units of kT. As soon as A exceeds this threshold, the system 
begins t.0 phase separate wit,li a position-dependent amplitude proportional to p ( r ) .  The 
phase separation pattern for a symmetrical grafted blend in melt conditions is shown on the 
right side of Figure 2. The int,riguing thing about this phase separation is its controllability. 
Changes in the stretched configurations of the chains necessarily alter the phase separation 
pattern. We can hope to create a wide variet,y of patterns, by adding solvent, by altering the 
architecture of the chains, and by departing from the symmet,ric conditions shown here. A 
pattern of special interest is simple stratificat,ion, with the white chains above and the black 
below, or vice versa. Since either of these choices is equally stable, this gives the possibility 
of switching the layer into either of two inequivalent, states [40] with different t.ransport. or 
wetting properties. 

Another type of response is even more fundamental than t,he compositional response 
discussed here. This is the elastic response, which describes how a force exertled at, one 
place in the layer is propagat,ed elsewhere. A fundamental elastic response is t,he response 
of pressure at  r’ when the density is perturbed at r .  To realize this perturbation, we could 
blow up a tiny balloon at  T and hold it there, as illustrated in Figure 3. Physically, we might 
graft an extra chain with a bulky end group to the surface beneath T .  IJnder melt. conditions, 
the perturbation cannot change the total density anywhere; thus the monomer density must 
have a small dip where the additional matter was inserted and must be unchanged elsewhere. 
In general t,his causes the pressure to  change near the perturbation. 

In an ordinary melt, this pressure response C,(r, r’) is normally not of interest, because 
it is so small. I t  may be readily calculated from the compositional response function C,(r, r ’ ) .  
We saw above that  C, is the response of the monomer density Ad, to  a small changt: of 
pressure Ap elsewhere, taking the chains t o  be independently moving in the pressure field 

A#(.) = 1, Cc(r’,  r)Ap(r‘). 

P(T): 

But the chains in our melt layer are not independent; p ( r )  must always be shaped so that 
4 ( r )  has the imposed form. In the present case, this is the unperturbed d, of unit,y, plus a 
delta-function perturbation a t  T O :  

b(r - T O )  = 1, Cc(r’,  r)Ap(r’). (2) 

This Ap is the response we seek. It is evidently the inverse of Cc(r’,  r )  considered as a linear 
operator. 

This inverse is simple to perform for the melt case by expressing the perturbations as 
plane waves. Then the compositional response to  a plane wave of wavevector Q is simply 
the single-chain scattering function [ll] SO(Q). The pressure response to a plane wave is 
evidently I/So(p). The integrated pressure response is l/S(O) - 1/N, where N is the 
chainlength. (This integrated pressure is the work needed to add the external object; this 
is of order 1 / N  per monomer [ll].) The tiny perturbed pressure extends to  a range of the 
order of the polymer size. 

In the grafted layer, we expect a much larger pressure response. Here the work to  add 
a monomer is the pressure times its volume. As we have seen, this pressure is independent 
of the chainlength and does not go to zero. To determine this response from the inverse 
condition Eq. (2), some delicacy is needed. To see this, we note that  when the halloou is 
inserted, the height of the layer above it must rise: an unoccupied region becomes occupied. 
Rather than dealing with this displaced boundary explicitly, it is easier to  retain t.he original 
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top boundary and account for the matter that  must pass through it by an additional density 
perturbation. Then we may express the desired C, in terms of the compositional response 
C, of the layer with the height held fixed (ie., a layer with a rigid lid a t  height h). We may 
find the amount of matter that  must pass through this lid by the condition that  Ap(h) = 0. 
The resulting operator C, differs from C;l by a simple projection operator [42]. We 
may readily guess the global behavior of the pressure response using energy-balance ideas 
mentioned in the last section. We recall that  the global elastic behavior of the grafted layer 
should be like that  of a rubber or gel bonded to the surface. If a tiny balloon were blown 
up in such a rubber layer, it would create a bulge a t  the top. This bulge must have a width 
the order of h ,  since the size of the balloon cannot be relevant, and h is the only other 
length scale. Thus the pressure response in our grafted layer must have a range of order h, 
even though the response function C, that  determines it has a much smaller range of the 
order of the ideal chainlength R. To see how the response depends on z‘, we may consider 
a perturbed density in the form of a thin, uniform layer inserted at  height t. We’ve seen 
above that  the density profile is controlled by the distribution of free-end positions { z ~ } .  
The requisite slight depletion in the density at z may be achieved by removing ends from 
the vicinity. This by itself would also result in too few monomers below z; accordingly, 
extra ends must be supplied there. But all this moving of ends has little impact on the 
pressure profile. Before the perturbation we argued above that  the pressure profiIe must be 
parabolic. Our reasoning did not depend on the density profile, but only on the equilibrium 
among chains ending at  different heights. This equilibrium still holds in the presence of our 
perturbation. Accordingly, the profile remains parabolic. It simply shifts upward slightly, 
so that  it vanishes a t  a slightly greater h. In this regard, our layer does not respond at  all 
like a rubber, but rather like a simple liquid: the response is uniform throughout t,he layer. 

This simple response relies on the perturbation being weak. If it is made too strong, 
something remarkable happens. Above we removed the needed monomers a t  z by removing 
chain ends there. But most of the monomers at z belong to  chains that end above t. Thus, 
if we ask for too many monomers to  be removed at  z ,  we can easily deplete all the ends 
there. What  happens if we must remove more monomers than this? The layer now responds 
in a new way. Once all the  ends have been removed from the vicinity of z ,  t.he chain of 
reasoning leading to  the parabolic pressure is broken. There is now an “depletion layer” 
with no ends near t. The energy S ( z )  for a chain ending there is no longer the same as 
energies elsewhere (it must be larger). The pressure must still be parabolic from the surface 
up to the depletion layer, but in this layer it can break away from the parabolic shape. By 
dropping off faster with height than the parabola, the pressure profile can stretch out the 
chains a t  z to  produce the required reduction in monomers. Beyond the depletion layer free 
ends are needed once again. The  pressure must again be such that  S(z0) above the zone is 
equal to  that  below; this determines its form for all heights above the depletion zone. 

The depletion zone divides the chains into two populations--one set confined below the 
zone, and the other obliged to  traverse it. The zone inhibits the otherwise free exchange 
of chain ends throughout the layer. This free passage may be turned on or off if one can 
perturb the density a t  one height by a small amount (how small depends on the width of the 
perturbed region and the shape of the perturbed density). The depletion zone mechanism 
thus offers a potential way to  control transport across the grafted layer. This phenomenon 
illustrates the nonintuitive behavior that the cooperative stretching of tethered chains can 
show. In some ways it resembles the controlled transport possible in doped semiconductors, 
where the local carrier density is controlled by electrostatic equilibrium over relatively long 
distances. We do not yet have quantitative understanding of the depletion phenomenon in 
the case sketched here. But we do in a simpler case, wiz. that  of a convex grafting surface. 
In such a surface, like the outside of a cylinder, the chains must converge as they propagate 
inward from their free ends. Near the surface, there is an inevitable excess of monomers if 
the potential is parabolic. To remedy this the system must abandon the parabolic profile 
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and create a depletion zone near the surface, as first anticipated by Semenov [31]. The 
equilibrium profiles of pressure and end density for such curved layers may be found by 
solving well-behaved integral equations [43]. In the case of a cylinder in melt conditions, 
the profiles can be found exactly [43]. One finds, e.g. that the depletion zone grows with 
the curvature and finally achieves a thickness of 2/7r of the layer height, when the grafting 
cylinder is much smaller than the layer thickness. 

CONCLUSION 

In this talk I’ve tried to show that the cooperative stretching of chains densely tethered 
to asurface gives rise to qualitatively new behavior. Within the layer both local composition 
and local pressure respond to perturbations in ways not seen in other polymer fluids. As 
further types of response are explored, there is every reason to expect more new phenomena, 
not implicit in the response functions treated here. One hint of these possibilities is the 
abrupt apparent thickening in grafted layers under flow reported by Jacob Klein at this 
meeting. Another is the “igloo” profile that results from free-end attraction to a second 
surface, reported by Jean-FranGois Joanny. These new behaviors hold out the hope that 
grafted layers can create controllable structure and transport properties in unanticipated 
ways. 
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